Search results for "Parametric power term"

showing 1 items of 1 documents

The behavior of solutions of a parametric weighted (p, q)-laplacian equation

2021

<abstract><p>We study the behavior of solutions for the parametric equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta_{p}^{a_1} u(z)-\Delta_{q}^{a_2} u(z) = \lambda |u(z)|^{q-2} u(z)+f(z,u(z)) \quad \mbox{in } \Omega,\, \lambda >0, $\end{document} </tex-math></disp-formula></p> <p>under Dirichlet condition, where $ \Omega \subseteq \mathbb{R}^N $ is a bounded domain with a $ C^2 $-boundary $ \partial \Omega $, $ a_1, a_2 \in L^\infty(\Omega) $ with $ a_1(z), a_2(z) > 0 $ for a.a. $ z \in \Omega $, $ p, q \in (1, \infty) $ and $ \Delta_{p}^{a_1}, \Delta_{q}^{a_2} $ are weighted …

Positive and negative solutionsGeneral MathematicsNodal solutionsLambdaOmegaCombinatoricssymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaQA1-939FOS: Mathematicspositive and negative solutionsResonant Carathéodory functionudc:517.956Physics35J20 35J60Spectrum (functional analysis)weighted (pWeighted (p q)-LaplacianDifferential operatorresonant Carathéodory functionweighted (pq)-LaplacianDirichlet boundary conditionBounded functionq)-laplacianDomain (ring theory)symbolsnodal solutionsParametric power termLaplace operatorMathematicsparametric power termAnalysis of PDEs (math.AP)
researchProduct